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Observations of parametric instability and breaking 
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Experiments are described in which a rectangular tube filled with a stratified fluid and 
tilted at an angle CL (about 12') is rocked at the critical frequency of waves on a slope, 
r = Nsina, where N is the uniform buoyancy frequency of the fluid in the central 
section of the tube. Localized overturns with axes transverse to the flow are observed 
with a scale comparable with the tube height, producing convective motions and 
mixing. The overturns have a periodic structure along the tube and, although occurring 
on each forcing cycle, they alternate in position, so that they reoccur at a given position 
only every two cycles, that is at the frequency of the first subharmonic of the forcing 
frequency. The wavelength and vertical structure of the disturbance are consistent with 
the presence of an internal wave mode with a frequency half that of the forcing, and 
this is indicative of a parametric instability. The parameters of the regions where static 
instability occurs show that, as observed, the fluid is more likely to be unstable to 
convective motions than in earlier experiments (Thorpe 1994 b) on standing waves. 

1. Introduction 
The diapycnal transport of momentum, heat, or properties such as salinity and gas 

composition resulting from the breaking of internal gravity waves, is important in 
establishing or modifying the structure of the Earth's atmosphere anid oceans. Little, 
however, is known about the circumstances leading to wave breaking, or of the form 
and nature of disturbances following the formation of regions of static instability in 
overturning internal gravity waves (Thorpe 1994 b), and in consequence the 
identification, classification, and detection of breaking events and the parameterization 
of their effects, are uncertain. 

An exact solution for the form of overturning progressive or standing internal waves 
in an infinite fluid with a uniform density gradient is available (Thorpe 1994b), and 
examples of the solution with vertical isopycnals and, at larger amplitude, with regions 
of static instability, are shown in figures l(a) and 1 (b), respectively. The constant phase 
lines are inclined to the horizontal at an angle, 0 (for clarity, in the figure chosen to 
be 30°), such that 

CT = Nsin 0, (1) 
where CT is the wave frequency. Infinitely long thin layers of statically unstable fluid are 
formed (stippled in figure lb ) ,  lying parallel to the constant-phase lines between 
parallel layers in which the density gradient is greater than the mean. It is impossible 
to reproduce the conditions of an infinite fluid in the laboratory. It was thought, 
however, that some approximation both to the parallel motion along the constant 
phase lines and to the zero phase propagation in standing internal waves, might be 
possible by oscillating a tube at the frequency at which internal waves in a uniformly 
stratified fluid filling the tube propagate parallel to its mean slope. In particular, large 
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FIGURE 1. The form of isopycnal surfaces in an internal gravity wave propagating at an angle of 30” 
to the horizontal, (a) with an amplitude at which the isopycnal surfaces just become vertical; (b) with 
greater amplitude when ‘overturning’ occurs, with regions of static instability. 

motions might be driven by increasing the oscillation amplitude. This is a description 
of an experiment and the observations made to test this idea. The hope of generating 
overturning waves like those of figure 1 was not fully realized, but other interesting 
phenomena were observed. 

One particular process was found to dominate the developing motion. Small- 
amplitude internal waves in a uniform density gradient are prone to parametric 
instability, in which parasitic waves with frequency half that of the primary wave grow 
at its expense (McEwan & Robinson 1975; Mied 1976; Drazin 1977; Klostermeyer 
1982, 1983). McEwan & Robinson, in particular, made a set of careful and elegant 
experiments in which subharmonic instability was excited in a uniformly stratified fluid 
contained within an oscillated cylinder, to simulate conditions occurring locally in an 
internal wave. They also showed that small-scale disturbances or ‘traumata’ noticed 
earlier experiments in standing waves (McEwan 197 1) or resonantly interacting waves 
(McEwan 1973) had characteristics, particularly their orientations, consistent with 
their being waves resulting from a local parametric instability forced by the primary 
wave; since the frequency of the unstable waves is half that of the primary wave, O-, the 
inclination of their constant phase surfaces is given by (1) as sin-’ (r/2N). (See also 
Taylor 1992 who describes further experiments on standing internal waves and small- 
scale turbulence.) McEwan & Robinson suggested that parametric instability should be 
important in the ocean, providing an effective means to cascade energy to lower 
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frequencies and higher wavenumbers. Mied and Drazin showed that, in inviscid fluids, 
even infinitesimal internal waves should be unstable, those with highest wavenumbers 
being the fastest growing. Mied made numerical calculations of the conditions of 
neutral stability and of the growth rates in inviscid fluids, finding instability for waves 
with 0 in the range 10" < 0 < 80", but expressed the caveat that instabilities acting in 
concert would extract energy from the primary wave at an appreciable rate, altering its 
amplitude and so invalidating the assumptions of the linear theory. Klostermeyer 
generalized Meid's work, improving his numerical approach in the study of an inviscid 
Boussinesq fluid. As McEwan & Robinson showed however, knowledge of the viscous 
decay rate of the excited modes is necessary in order to identify which of them is 
unstable. 

Klostermeyer (1984, 1990) has also demonstrated that parametric instability may be 
an important process in the atmospheric thermosphere, arguing for example that the 
acoustic double peaks commonly found in high-frequency Doppler spectra near 
thunderstorms are a consequence of the instability. The precise role of the instability 
in generating turbulence, the form turbulence will have and its effectiveness in mixing, 
however, are far from clear. Experiments are reported elsewhere (Thorpe 1994b) in 
which standing internal waves overturn and may lead to weak mixing. The experiments 
reported here demonstrate the severe effect that the (primary) parametric instability 
may have on a wave field, with the (secondary) promotion of static instability in 
overturning internal waves, and the subsequent (tertiary) development of convective 
motions and mixing. 

2. The experiments 
A tube of length L = 2.95 m, depth H = 10 cm and width = 26 cm, was filled in a 

vertical position, using the standard two-tank system with water and brine, to produce 
a uniform density gradient. Small quantities of dye were introduced during filling to 
mark isopycnal surfaces. The tube was then tilted about a horizontal axis normal to its 
length to an angle a, between 11" and 14" to the horizontal. The density gradient in the 
tube is then uniform with constant buoyancy frequency, N ,  except in two triangular 
sections at the ends (see $3.1) where the gradient is diminished. The angle, a, was 
chosen to be sufficiently small so that the dye layers were stretched some 4 times during 
the tilt, making them thin and well-defined, but c1 was sufficiently large that the central 
region of uniform gradient was a significant proportion of the tube length (e.g. 0.65 if 
a = 11'). After the fluid had come to rest, the tube was oscillated about its inclined 
position through a small angle, typically 0.015 rad (z 0.8"), via a shaft linking it to an 
eccentric cam driven by a variable motor. The forcing frequency, cr, was chosen to be 
close to N sin a, the frequency of internal waves that have group velocities directed at 
an angle a to the horizontal. Two-dimensional waves forced at this frequency in the 
tube therefore propagate approximately parallel to the mean inclination of the tube or, 
generated away from the boundaries and later incident on the tube boundaries, are 
reflected as from critical slopes (Phillips 1966; Ivey & Nokes 1989). 

Figure 2 shows the development of isopycnal oscillations at the centre of the tube. 
The isopycnal surfaces oscillate in phase with the tube, steepening as the lower end of 
the tube rises (figure 2b, d) and stretching (c,e) as it falls, the motion remaining in 
phase along the central (1.8 m) length of the tube. Except near the boundaries, the 
isopycnals are planar. The boundary layers near the upper and lower surfaces of the 
tube become turbulent after three oscillations as in the experiments on internal waves 
incident on critical slopes of Ivey & Nokes (1989), and the dye lines there become 
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FIGURE 2. The form of dyed isopycnal surfaces in a tube inclined at an angle, a, of 0.245 rad (14.0") 
and rocked at a frequency close to that at which internal waves propagate at angle a. Here 
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FIGURE 3. lsopycnal dyed surfaces in a rocked inclined tube -the development of overturning 
isopycnals. Here a = 0.192 rad (1 l.O'), No = 0.501 rad SKI, N = 1.1 14 rad s-l and the critical period, 
2n/(Nsina) = 28.69 s. The period of the forced oscillation was 29.04 s, and the half-angle of forcing 
was 0.0163 rad (0.932'). The photographs were taken at 2 s intervals after 6 forcing cycles. 

diffuse (figure 2 g ) .  The dye lines marking isopycnals eventually become almost vertical 
at one phase of the oscillation, with evidence of perturbations with a vertical 
wavenumber of about 10n/H and signs of overturning, the onset of static instability, 
most prominently near the upper and lower boundaries (figure 2f, h). The evolution of 
these overturns is shown in figure 3. The overturns appear to retain almost constant 
phase over lengths of 0.5-1 m along the tube. (Some of the loss of phase and resolution 
in the photographs is caused by parallax; the camera was about 4 m from the tube.) 
Figure 3 (6 ,  c) shows the onset of vertical convective motions associated with the small- 
scale perturbations, most clearly visible in the fourth and fifth dye bands from the right, 
although the photographs do not establish whether the associated motions remain two- 
dimensional. 

Larger-scale, periodic overturn becomes apparent two cycles later. Figure 4 shows 
the first such large overturn to occur near the centre of the tube. Overturn is 

No = 0.525 rad s-l, N = 1.066 rad s-', and the critical period, 2nl(N sina) = 24.30 s. The period of 
the forced oscillation was 24.24 s, and the half-angle of forcing was 0.0193 rad (1.1'). (a) Prior to the 
motion. The dye lines are horizontal, at rest. The shadow behind the centre of the tube, marked by 
a small triangle at the top of the tube, is caused by the tube supports. The motion begins with a 
downward movement of the right-hand end of the tube. Dye profiles are shown after (b) 2 cycles (left 
end rising); (c) 2; cycles (left end falling); (4 3 cycles; (e) 3; cycles; (f) 4 cycles; ( g )  + cycles; (h) 5 
cycles. 
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FIGURE 4. Isopycnal dyed surfaces in a rocked inclined tube ~ the development of overturn in the 
subharmonic wave; the same conditions as given in the caption of figure 3. Photographs taken after 
(a) 7; cycles; (b-f) at 2 s intervals after 8 cycles; (g) after 8; cycles; (h) after 9 cycles. 
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symmetrical in the central dye band, but occurs closer to the upper boundary to the left 
(lower down the slope) and nearer the lower boundary to the right, so that the shape 
of the ‘overturning eddy’ is flattened into an elliptical shape with an aspect ratio of 
about 0.2 and with an almost horizontal axis (figure 4c, 4. The region in which the dye 
lines are folded, or the scale of the overturn, is about $H. Dye bands on either side do 
not overturn, but further along the tube other overturns occur in phase with that at the 
centre of the tube, their centres being at distances of about 60cm (see $3.2). The 
overturn is followed by signs of small-scale mixing (figure 4d-f) before the dye lines are 
again stretched in the oscillating flow, as shown in figure 4(g), one half-period later. 
Figure 4(h), one period after figure 4(c), shows that no overturning occurs at the 
centre of the tube on the following cycle, but overturning occurs simultaneously on 
either side of centre in the regions where the fluid had, in figure 4(c), remained stably 
stratified. This cycle of overturning is then repeated, with overturns occurring at the 
centre of the tube and at locations separated by about 60 cm along the tube on either 
side (up to 5 occurring simultaneously) on one forcing cycle, and at intermediate 
positions on the next. This alternation is shown in figure 5. It continues and remains 
in constant phase with the forcing oscillation for at least 24 cycles, by which time the 
dye marking the initial isopycnals has mixed and become so diffuse that it is difficult 
to identify the centres of overturn. 

3. Analysis 
3.1. The mean density 

The density distribution in the tilted tube can be found from the uniform gradient of 
density in the tube when vertical by applying the condition that the volume of fluid 
lying below an isopycnal must remain unchanged. Figure 6 is a sketch of the tube 
before and after tilt when, as in the present experiments, the tangent of the inclination 
angle is greater than the tube aspect ratio, t, > H/L .  Here, and below, s,, c,, t,+ etc. 
are equal to sin a, cos a, tan (.-/I) etc. respectively. For points at height, z ,  above the 
lowest point in the tube such that 0 < z < Hc,, the volume of fluid in the triangular 
section below level z is z2/(s2,) .  This volume is equal to y H ,  where y is the height in 
the tube, when vertical, at which is found the same density as at level z in the tilted tube, 
so that y = z2/(Hs2,). If the density in the tube when vertical is po [l - ( N i / g ) y ] ,  then 
the density in the tilted tube at height z is 

(2) 

and the buoyancy frequency is No [2z/(Hs2,)]i = n(z) say, tending to zero as z tends to 
zero. The density in the tilted tube has a uniform vertical gradient when Hc, < z < Ls, 
such that the density difference between points A and B remain the same. The vertical 
distance is reduced by a factor s,, and the vertical gradient is correspondingly 
increased, and the buoyancy frequency become N,/sin; a. The buoyancy frequency is 
continuous at z = Hc,. 

3.2. The forced oscillation 
McEwan & Robinson (1975) derive the equations of motion relative to an oscillating 
frame of reference, here that fixed in the oscillating tube. If we suppose that prior to 
instability the motion far from the ends of the tube is parallel to the tube walls, then 
the normal component is zero, and the two-dimensional continuity equation implies 
that the along-tube component, u, is independent of the along-tube coordinate, x. The 

P ( 4  = Po [1 - N: z2/(gHs2,)l 
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FIGURE 5. The subharmonic instability; the same conditions as given in the caption of figure 2. 
Photographs are at (a)  6; (b )  7;  (c) 8; (d) 9 cycles after the start. The photographs (a) and (c) show 
no overturns at the centre, but they are apparent at either side; (b) and (d) show overturns at the 
centre. 

nonlinear terms in the equations of motion vanish identically and, ignoring viscous 
terms and making the Boussinesq approximation, the equation for the along-tube 
momentum becomes 

where dQ/dt is the periodic angular velocity of the tube and p1 is the density 
perturbation, given by the conservation equation 

These equations combine to give 

which has a solution u = f(t) z / H  with z measured from the mid-point of the tube, and 
where f ( t )  satisfies an equation depending on time only. The depth-integrated along- 
tube speed is zero, satisfying the zero-net-flux condition imposed by the ends of the 
tube. The linear dependence of u on z implies that the initially plane density surfaces 
in the tube remain plane, as observed before the onset of instability in the experiments 
and away from the boundaries where viscous effects are important. 
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FIGURE 6. The coordinate geometry of the vertical and tilted tube. 

3.3.  Subharmonic waves 
The inclination of the constant phase surfaces of internal waves to the horizontal is 
given by (1). Subharmonic waves are therefore inclined at an angle /3 = sin-' (n/2N) or 
approximately sin-l(+ sin a), since n / N  = sin 0 = sin a. A constant phase surface 
ABCDEF is sketched in figure 7. Since angles OBC and ODC are equal to a + /3 and 
a-/I respectively, the along-tube wavelength, h = DB, is equal to H[cot (a-,5-cot 
(a  + p) ] ,  which becomes 

using the relation between a and p. Comparison with the distance between 
neighbouring overturns in the experiments, A,, gives, at a = 0.192 rad (1 1 .Oo) : 
he = 7 0 1 3  cm and A = 69.4cm; at a = 0.203 rad (11.6O): A, = 6 0 f 5 c m  and 
h = 65.9 cm; and at a = 0.245 rad (14.0") : A, = 57 2.5 cm and h = 54.6 cm. The 
estimates agree quite well with the observations. 

The upper and lower corners of the tube, for example the lower corner region in 
0 < z < Hc, (figure 6b), act as reflectors of incident internal waves. Perfect standing 
subharmonic waves will however occur only if the phase surfaces entering the corner 
regions are identical to those emerging. The propagation paths can be traced. Suppose 
that @ is the angle of the subharmonic constant phase lines to the horizontal. Constant 
phase surfaces of the subharmonic waves that are incident on the bottom of the tube 
at an angle @ to the horizontal that is less than the tube slope a, are reflected as in figure 
7 ; if the incident wave is at an acute angle to the vertical, the reflected wave is at an 
obtuse angle, and downward-going waves continue downwards. Now @ is equal to 

A = 2H(4-~:$/(3~,) (6) 
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Constant phase lines 

4-E 1 - Horizontal 

FIGURE 7. Constant phase lines of the subharmonic standing waves. 

sin-' [a/2n(z)], which is equal to sinp1 [(is,) (Hc,/z)i] since cr = N,, 3;. The angle Q, is 
therefore equal to a at the level z = ~ H c , ,  and is equal to (so the constant phase 
lines are vertical and reflect) at the level where z = :Heas:, or about 0.14 cm if 
a = 0.244 rad (14"). Constant phase surfaces that meet the bottom of the tube in 
iHc, < z < He, are inclined at an angle less than a, and reflect downwards towards the 
corner. When they pass below z = ;He, and meet the bottom in :Hc,s: < z < ~ H c ,  
however, their inclination to the horizontal exceeds a, and they are reflected from the 
bottom at an acute angle to the upward vertical to re-emerge from the corner region. 
Perfect reflection is possible when a constant phase surface reflects in the corner at 
z = +Heas: as sketched in figure 8. The constant phase surface is vertical at this 
position, its inclination to the horizontal decreasing as z increases, and it first meets the 
lower boundary of the tube at A, figure 8, at a level z = &.He:, reflecting back towards, 
and then from, the end of the tube at B to cross into the region of uniform density at 
C at z = He, at a distance xo = Hc:(32-27c:)/24sa from the end of the tube. The 
first reflection from the lower boundary of the tube is at D, a distance 
x1 = x,, + H(24 + 27c: - 32c,)/24ta_, from the lower corner. With reference to figure 8 
it is seen that if 2x, + md- Hcot (a  + /3) = L,  where m is an integer and L is the tube 
length, then perfect standing waves are possible. We have calculated the ratio 

q = [L - 2x, + Hcot (a + /3)]/d 

for the experiments. If q is an integer, then an integer number of wavelengths of 
standing subharmonic waves can occur in the uniformly stratified section of the tube. 
Wefindthatfora=0.192rad,q=2.16+0.12;fora=0.203rad,q= 2.39f0.12;and 
for a = 0.245 rad, q = 3.27k0.13. Although there is some uncertainty over these 
precise values because the undetermined effect of mixing during filling and tilting the 
tube may have altered the density structure in the corners of the tube (30 % errors in 
the estimates of x,, are indicated by the uncertainty in q), we conclude that it is unlikely 
that perfect standing subharmonic waves existed. The time for subharmonic waves to 
propagate along the length of the tube at their group velocity, and hence the time 
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FIGURE 8. Constant phase lines for standing subharmonic waves in the tilted tube. The two end 
sections of the tube are sketched. The total length is L. The first reflection of a constant phase surface 
from the lower boundary of the tube, beyond the ‘corner’ region where the density gradient is less 
than in the central region of the tube, is at D. F is the first position at which the surface connecting 
to the upper corner of the tube reflects from the lower boundary, and F is at a distance 
x,-Hcot(cc+p) from the end of the tube, G. For perfect standing wave conditions, the distance 
DF is an integer multiple of the wavelength, A. 

required for their establishment as normal modes, is about 330 s, or 14 cycles of the 
tube oscillation. We conclude that the subharmonic waves forced by the parametric 
instability are not normal modes of the system. We note, however, that the greatest 
discrepancy between the estimated wavelengths, A, and those observed, A,, occurred for 
a = 0.203 rad when the ratio, q, was furthest from an integer value, suggesting that the 
presence of the ends of the tube may have had some effect on the resonance. 

3.4. Wave overturn and mixing 
The vertical scale of the distortions to the primary forced wave seen in figures 4 and 
5 suggest a mode with a vertical scale comparable with the height of the tube. The 
structure of the standing subharmonic wave may be determined by an extension of the 
theory for progressive waves reflecting from a uniform boundary. Taking coordinates 
x and z up the slope and normal to the lower boundary of the tube, respectively, the 
first-order density perturbations for standing waves may be written 

P = P l ( 4  + P1( - 4, 
where 

(7) 

p(c) = [ N i  a / (2gcr’)l {(kc, - n, s,) sin (kx + n, z - cr’t) - (kc, - nR s,) sin ( k x  + nR z - d t ) )  

and where a is proportional to the amplitude of the stream function, k is the upslope 
wavenumber, cr’ = No sp, n1 = ( k / 2 r )  (sag- sZn), nR = - ( k / 2 r )  (szs + sep) and r = s;-- s: 
(see Thorpe 1987, equation (20). This may be reduced to 

P = (N:  ahg/ga’r )  [s,+~ cos (kx + nR z )  + saPP cos (kx + n, 211 sin gf t. (8) 
When a: is small, and k = 27c/A and (7) are used to simplify the equation, the density 
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perturbation is proportional to 3 cos k[x + (2z/zcL)] + cos k [ x +  (2z /3sa) ] .  The vertical 
density structure, and hence the displacements, is dominated by the first term in this 
expression, which has a vertical wavelength of i H ,  twice the height of the overturning 
regions in figure 3 .  The subharmonic wave therefore sets the scale for the overturns, 
which appear at its standing wave ‘crests’, separated by distance A, on one cycle of the 
forcing, and at the intermediate positions of the ‘troughs’, where the ‘crests’ 
subsequently occur on the next cycle. The position of the central overturn is dictated 
by symmetry along the tube, and the vertical scale of the overturns is set by the 
perturbation field of the subharmonic. 

Static instability is observed to occur in the overturning eddy-like structures (e.g. 
figure 4c) resulting from the superposition of the primary oscillation (see in figure 2) 
and the parasitic subharmonic. We may estimate a Rayleigh number, R, of the 
overturn, and a parameter, r, such that the vertical density distribution in the 
overturning region is proportional to (rKz - sin Kz), where K is a vertical wavenumber, 
following the method and analysis described by Thorpe (1994b) in a study of the 
stability of overturning standing internal waves. The Rayleigh number is equal to 
gB, h 3 / ( 9 v ) ,  where B, is the positive density gradient at the centre of the unstably 
stratified region divided by the mean density, v is the kinematic viscosity, and 9 is the 
diffusivity of salt in water. For the conditions of figure 4 and with a scale height, h, of 
i H ,  and taking v = 1 x lo-’ cm s-’ and 9 = 1.4 x cm sP1, we estimate that R is 
equal to 2.1 x 10’ and the parameter r is 0.4. The Rayleigh number greatly exceeds the 
critical value of 56 at which instability is estimated to set in at this value of r (see 
Thorpe 1994a, figure 7), so that the fluid in the overturned, statically unstable, region 
is predicted to be dynamically unstable. Growth rates of infinitesimal disturbances, y, 
non-dimensionalized with the buoyancy frequency, N ,  increase as the Rayleigh number 
increases and as r decreases. The non-dimensional growth rates, y, = yN-l, at 
R = 2.1 x 10’ and r = 0.4, have been found using a series expansion (Thorpe, 1994a, 
9 3 . 3 )  with truncation after 10 terms. The maximum growth rate, y1 = 1.00f0.05, 
corresponds to a dimensional growth rate, y ,  of 1.12f0.06 sP1, and occurs at a 
disturbance wavenumber of (7.2 f 0.2)/d0 directed across the tube, corresponding to a 
wavelength of 2.91 f0.08 cm. This implies a growth of the disturbance of 70-1 12 times 
in the 4 s period between figures 4(b) and 4(d), and gives e-folding rates 2.7 times the 
largest of those found in the experiments on overturning standing internal waves 
(Thorpe 1994b), where the corresponding values of R and r were 6.94 x lo7 and 0.87, 
respectively. The validity of the theory is however in doubt, both because nonlinear 
effects were omitted and because the aspect ratio of the overturn is not small and, in 
particular, is much larger than that of the ‘z-shaped’ isopycnal overturns in standing 
or progressive waves for which the theory is designed. The expectation of large growths 
rates is however consistent with the observed onset of mixing in these experiments. 

4. Conclusion 
McEwan & Robinson’s (1975) study of small-amplitude parametric instability 

appears to be the only laboratory experiment, other than those on standing waves in 
which ‘traumata’ are observed (9 l), in which the instability has been reported. In the 
present experiments, the vertical scale of the parasitic waves is larger than that of the 
‘traumata’ reported by McEwan & Robinson, the scale of the overturning region of 
statically unstable fluid becoming comparable with the depth of the tube, and there is 
clear evidence of the development of convective motions and mixing. The overturning 
structure contrasts with the horizontally elongated z-shaped isopycnal folding in thin 
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layers found in internal waves in earlier tilted-tube experiments (Thorpe 1978a, b,  
19Sl), and in particular with those described by Thorpe (19946). The experiments 
provide direct evidence that parametric instability can indeed lead to convective 
motions and to mixing. The vertical scale selected by the parametric instability, both 
as here in confined regions, and in the natural environment, remains to be fully 
explained. 

The experiments were made at the Centre for Water Research at the University of 
Western Australia during a period of study leave in 1992. I am grateful to Mr John 
Devil1 and to Mr Bill Deugh for their expert construction of apparatus, to Mr Seng 
Giap Teoh, Mrs Silvia Bruno and to my wife, Daph, for their help in recording the 
results, and to the CWR and the Royal Society for financial support which made the 
visit possible. 
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